Sponsored By

AI: Zeroing in on a Moving TargetAI: Zeroing in on a Moving Target

Exploring how enterprises can find value in AI and get a handle on its application

Gary Audin

January 10, 2019

3 Min Read
No Jitter logo in a gray background | No Jitter

Artificial Intelligence (AI) -- in the news, blogs, articles, webinars, and many other media -- hits us daily. AI is here, but how much can it really do? Where is being applied now? What is AI’s impact?

 

Enterprise executives need to realize that AI can provide value; its adoption is constrained by technical and organizational issues. There are probably few IT staff well-versed in AI, the tools may be difficult to embed in existing systems, and there may cultural barriers in the organization.

 

AI in Communications

According to the McKinsey article, “What AI can and can’t do (yet) for your business,” the high tech communications and financial services organizations are the most advanced in applying AI to their businesses. High tech and communications has the higher adoption of all sectors surveyed, with about 32% having adopted AI. High tech and communications have had a 12% increase in AI spending in the last three years (2015 through 2017).

 

Audin_AI_1.png

 

AI's Impact

Artificial intelligence has and will continue to impact service providers, vendors, VARs, MSPs, enterprises, and customers. AI, combined with machine learning, will influence:

 

  • How customers buy product and services

  • How providers, vendors, VARs, and MSPs sell and support their customers

  • The level of care contact centers and help desks are able to provide to customers as they implement AI for advanced speech recognition techniques, augmenting IVR, supporting omnichannel, and automating customer personalization

  • The way in which network problems are managed, troubleshooted, and resolved

 

Do You Have Enough Data?

This is an important question. In order for AI to effectively approach a problem, large quantities of good data must be available. AI systems are trained rather than programmed. This training requires large amounts of data to perform the task accurately.

 

It may be that obtaining large data sets may be difficult or impossible. If there is not enough data, the mathematical model of AI, which is trained by deep learning, can arrive at a prediction, recommendation, or decision that is not accurate. When the data sets are really large, then it is nearly impossible for a human to look at the results of the AI decision and determine whether or not it makes sense.

 

Data Labeling

The latest AI models are trained through a technique called supervised learning. This requires humans to label and categorize the data. Without the proper labels, the raw data is just that -- raw data that does not relate to anything. Unfortunately, labeling and categorizing data can be a sizable and error-prone task.

 

There are promising new techniques emerging such as in-stream supervision, demonstrated by Eric Horovitz at Microsoft research. This is where the data is labeled in the course of natural usage. By supporting unsupervised or semi-supervised approaches, this reduces the need for large labeled data sets. Those interested in AI should look at “reinforcement learning” and “generative adversarial networks” to deal with the labeling problem.

 

Data Bias in Networks

It may be difficult to comprehend, but bias in labeling the data and algorithms to process the data are a challenge. Choosing which data points to use and which to disregard can lead to error-prone AI outcomes. Further, when the process and data collection is uneven across groups such as the behaviors of network technologies, there can be problems in the conclusions that AI delivers and how it makes predictions. This leads to misinformed decisions, misrepresented technical predictions, and distorted models of how networks operate. What makes it even more difficult is that the biases may not be recognized or disregarded.

 

AI is a Moving Target

Working with AI is not a one-time decision. You need to do your homework and keep up with what’s going on. You need to create a data strategy so that the AI algorithms can unlock insights into your networks. Think laterally; learning techniques in one area of AI application can be carried over to another AI application.

 

For example, managing network components for network operation can also be used for managing unified communications services. You may not want to be, but you probably will be a trailblazer. If you want to remain competitive, keep applying and expanding your AI projects to keep ahead of your competition rather than following it.

About the Author

Gary Audin

Gary Audin is the President of Delphi, Inc. He has more than 40 years of computer, communications and security experience. He has planned, designed, specified, implemented and operated data, LAN and telephone networks. These have included local area, national and international networks as well as VoIP and IP convergent networks in the U.S., Canada, Europe, Australia, Asia and Caribbean. He has advised domestic and international venture capital and investment bankers in communications, VoIP, and microprocessor technologies.

For 30+ years, Gary has been an independent communications and security consultant. Beginning his career in the USAF as an R&D officer in military intelligence and data communications, Gary was decorated for his accomplishments in these areas.

Mr. Audin has been published extensively in the Business Communications Review, ACUTA Journal, Computer Weekly, Telecom Reseller, Data Communications Magazine, Infosystems, Computerworld, Computer Business News, Auerbach Publications and other magazines. He has been Keynote speaker at many user conferences and delivered many webcasts on VoIP and IP communications technologies from 2004 through 2009. He is a founder of the ANSI X.9 committee, a senior member of the IEEE, and is on the steering committee for the VoiceCon conference. Most of his articles can be found on www.webtorials.com and www.acuta.org. In addition to www.nojitter.com, he publishes technical tips at www.Searchvoip.com.